
 (2025-02)

UDP Commands User Manual

Model No. ET-FMP50
ET-FMP20
ET-SBFMP10

■How to use UDP commands

●Overview

Media playback operations using the Timeline function of the media processor (hereinafter referred to as "FMP")

 can be performed with commands using UDP communication.

Media playback is performed on a playlist (*) basis.

Up to four playlists can be registered to FMP, and you can switch between registered playlists to perform media playback operations.

It also allows synchronous playback of media by multiple FMPs.

*Playlists can contain multiple individual media (videos and still images), and playback operations can be performed as a single piece of media.

●Configuration diagram

HDMI

　LAN

Projector

Projection

　　LAN

* This is the part that is created by the user

PC
FMP50/
FMP20

Projector

SBFMP10

Visual
Software
Suite

WEB Browser

UDP Command
Aplication
※

● Create playlists using Visual Software Suite (VSS) and send playlists to FMP

*For details, refer to the Visual Software Suite (VSS) manual.

1. Playlist creation is done on the playlist editing screen below.

(1) Add media to be registered in the playlist.

(2) Create a playlist.

(3) Register the media added in (1) to the playlist created in (2).

2. The created playlist will be sent to FMP on the online preview screen.

(1) Add a group to send the playlist to.

(2) Add FMP as a media processor to send playlists.

(3) Add the playlist created by the playlist editor.

(4) After (3) is implemented, a pop-up window for data transfer will appear, so click "OK" to send the playlist to FMP.

(5) If the pop-up does not appear, click "Update Playlist" to display the pop-up (4). (Hereafter, the same operation as (4) is performed.)

(1) (2)

(3)

(1)

(2)

(3)

(4)

(5)

●In the WEB (FMP Series Control Window),how to set the Timeline mode

(1) Use a web browser to access the IP address of the FMP.

(2) Click "Player" → "Settings" from the left menu to move to the following screen.

(3) Select "Timeline" from "Player" in the player settings.

(4) Click the "Set" button.

(5) After a few seconds, the player "Timeline" starts on FMP.

(2)

(3)

(4)

(1)

●In the WEB (FMP Series Control Window), Multiple FMP Synchronized Settings

* This section describes the settings for synchronized media playback by two media processors. Please refer to the FMP manual for details.

・ Secondary side

(1) With a web browser, access the IP address of the FMP to be used as a secondary.

(2) Click "System" → "Date and Time" from the left menu to move to the following screen.

(3) Select "SoftwareSync" from "Synchronization Protocol" for date and time,

 Set the "Domain Number" in the player settings to any value ("111" here),

 Select "Secondary" from "Primary/Secondary".

(4) Click the "Set" button.

(1)

(2)

(3)

(4)

・Primary side

(1) Use a web browser to access the IP address of the FMP to be the primary.

(2) Click "System" → "Date and Time" from the left menu to move to the following screen.

(3) Select "SoftwareSync" from "Synchronization Protocol" for date and time,

 Set the "Domain Number" in the player settings to any value ("111" here),

 Select "Primary" from "Primary/Secondary".

(4) Click the "Set" button.

(1)

(2)

(3)

(4)

● UDP Command Specification

FMP side connection conditions

The FMP side is waiting at the following sockets.

IP address: IP address set in FMP

Listening port number: 65432

Source address: INADDR_ANY

Maximum transmit and receive size: 1024byte

List of operation commands 情報系Command一覧

GetSystemTime Time adjustment between UDP GetPlaylistInfo Retrieving Playlist Information

command execution side and FMP side

Play Playlist playback GetEachPlaylistInfo Retrieving media information in a playlist

Pause Stop playlist playback GetPlayingInfo Retrieving playlist playback status

Stop playback at the specified position

Stop Stop playlist playback

Playback stops when the command is received

(You do not need to specify the stop position.)

Seek Seeking playlist playback

Skip Skipping media in playlists

SelectPlayList Playlist Selection

Loop Playlist loop settings

DisconnectReq Restarting the Timeline Module

ResetPlaylist Reload a playlist

SetSyncTime FMP Time adjustment setting

(initial value is 3 seconds)

Steps to play a playlist (when specifying a synchronized playback start time)

[Prosessing Image】

Specified time elapsed

FMP Time ～

PC Time ～

GetSystemTime (Command) Play (Command)

(requesting time difference of internal clock)

(1) Execute GetSystemTime (time adjustment between UDP command execution side and FMP side)

(2) Obtain the time difference between the internal clock of the PC executing the UDP command and the FMP side, and add it to the parameter

"playback start synchronization time" of the subsequent UDP command.

(3) Execute SelectPlayList (playlist selection)

(4) Execute Loop (playlist loop setting)

(5) Execute Play (playlist playback)

After that, the playlist playback is stopped with the Pause, Stop, Seek, and Skip commands.

[Command Example]

(1) GetSystemTime CurrentTimeVss=1715237197598000

(2) ー

(3) SelectPlayList PlayListName=Playlist01

(4) Loop EnableLoop=0

(5) Play SyncTime=1727684152203481&PlayPosition=0

command description command description

Play

Steps to Play a Playlist (when not specifying a synchronized playback start time)

[Prosessing Image】

No need to execute (3 seconds elapsed (changeable with SetSyncTime))

FMP Time ～

PC Time ～

GetSystemTime (Command) Play (Command)

(no SyncTime)

(1) Execute SelectPlayList (playlist selection)

(2) Execute Loop (playlist loop setting)

(3) Execute Play (playlist playback)

After that, the playlist playback is stopped with the Stop, Seek, and Skip commands.

The FMP will perform playback, etc., 3 seconds after receiving the command (modifiable with SetSyncTime).

[Command Example]

(1) SelectPlayList PlayListName=Playlist01

(2) Loop EnableLoop=0

(3) Play

Checking the playback status of a playlist

(1) Set the playlist playback state

(2) Execute GetPlayingInfo (Get playlist playback status) at any time

(3) Judge the playback status of the playlist by increasing the CurrentPosition (current position of the playlist)

　 in the return of GetPlayingInfo (get playlist playback status)

Reload a playlist after updating a playlist

(1) Perform playlist update in FMP from Visual Software Suite (VSS)

(2) Execute DisconnectReq (module restart) or ResetPlaylist (reload playlist)

(3) Execute GetPlaylistInfo (to get playlist information) and GetEachPlaylistInfo (to get media information in the playlist)

　 and confirm that the playlist has been updated

(4) Execute "Procedure for playlist playback"

Play

● API List of UDP Command

Time adjustment between UDP command execution side and FMP side

Required
〇

Always
○
○

○

Playlist playback

Required
〇

Always
○

Example Return
On Success
OK

On Failure
NG

*: NG may be due to the following factors.
　- Playlist is not specified.
　- The playback start synchronization time points to the past.
　- The playback position of the playlist points outside the range of the playlist.

NG Parameter Cause of NG

Parameter Description Remarks
OK/NG Result

PlayPosition
Playlist playback position (elapsed time from the
beginning)

Linux time format (including usec after the decimal point) multiplied
by 1000000

Example Request
When specifying synchronized playback start time: Play SyncTime=1727684152203481&PlayPosition=0
When not specifying synchronized playback start time: Play PlayPosition=0 or Play

*1: The separator between the execution result and the parameter is " " (space), the delimiter between the parameters is "&", and the value of the parameter
is after "=".
*2: If the playback position of the playlist is set to something other than 0, playback can be started from the middle of the playlist.
*3:If synchronized playback start time is not specified, the "SyncTime" and "PlayPosition" parameters can be omitted. In that case, the FMP will start
playback from the beginning of the playlist 3 seconds after receiving this command (changeable with SetSyncTime).

Return Value

Play Command

SyncTime

Regeneration start time (LinuxTime + usec)
Linux time format (including usec after the decimal point) multiplied
by 1000000

Also, include the time difference in GetSystemTime

Specify a time that is at least 1 seconds ahead of the current time

Description
To play the specified playlist registered in FMP.

Request
Parameter Description Remarks

Example Return
On Success
OK CurrentTimeVss=1715237197598000&CurrentTimeFmp=1715237196004200

*1: The separator between the execution result and the parameter is " " (space), the delimiter between the parameters is "&", and the value of the parameter
is after "=".
*2: 1715237197598000＝2024/05/09 06:46:37.598000
　　　1715237196004200＝2024/05/09 06:46:36.004200

On Failure
none

Command Play

CurrentTimeVss Execution time set at the time of request

CurrentTimeFmp FMP Time(Linux time + usec)
Linux time format (including usec after the decimal point) multiplied
by 1000000

Parameter Description Remarks
OK Result Always [OK] is returnd

Example Request
GetSystemTime CurrentTimeVss=1715237197598000

*1: The separator between UDP commands and parameters is " " (space), and the value of the parameter is after "=".
*2: 1715237197598000＝2024/05/09 06:46:37.598000

Return Value

GetSystemTime Command

CurrentTimeVss 〇 UDP Commands execution time(LinuxTime + usec)
Linux time format (including usec after the decimal point) multiplied
by 1000000

Description
To determine the time difference between the internal clock on the PC executing the UDP command and the FMP side.

The time difference should be calculated in microseconds, and this value should be added to the parameter "playback start synchronization time" of the
subsequent UDP command.

Request
Parameter Description Remarks

Command GetSystemTime

Stop playlist playback

Required
〇

〇

Always
○

Stop playlist playback

Required
〇

Always
○

On Failure
NG CurrentPosition=-1

*: NG may be due to the following factors.
　- Playlist is not playing.
　- Playback stop in FMP is in progress.

Example Return
On Success
OK CurrentPosition=10000000

*1: The separator between the execution result and the parameter is " " (space), and the value of the parameter is after "=".
*2: 10000000 microseconds = 10 seconds

CurrentPosition ○
Playlist stop position (elapsed time from the beginning)

Linux time format (including usec after the decimal point) multiplied
by 1000000

Parameter Description Remarks
OK/NG Result

If you set this value to the playback position of playlist playback,
the playlist will be played from the stopped position.

Example Request
Stop

Return Value

Stop Command

Description
To stop playback of the playlist at the position at the time of receiving the command.
The video at the time of receiving the command is displayed and stopped.

Request
Parameter Description Remarks

Example Return
On Success
OK

On Failure
NG

*: NG may be due to the following factors.
　- The stop position of the playlist points outside the range of the playlist.

Command Stop

Parameter Description Remarks
OK/NG Result

Example Request
Pause StopPosition=3800490

*: The separator between UDP commands and parameters is " " (space), and the value of the parameter is after "=".

Return Value

Pause Command

StopPosition Playlist stop position (elapsed time from the beginning)
Linux time format (including usec after the decimal point) multiplied
by 1000000

Description
To stop playback of a playlist at the specified stop position of the playlist.
Stop while displaying the video of the stop position.

Request
Parameter Description Remarks

Command Pause

Seeking playlist playback

Required
〇

〇

Always
○

Skipping media in playlists

Required
〇

Always
○

Example Return
On Success
OK

On Failure
NG

*: NG may be due to the following factors.
　- Playlist not specified -> Playlist not selected
　- Playlist is not playing -> Playlist not playing
 - Another command is in progress -> Other command running

NG Parameter Cause of NG

Parameter Description Remarks
OK/NG Result

Example Request
Skip

*1: The separator between UDP commands and parameters is " " (space), and the value of the parameter is after "=".
*2:If synchronized playback start time is not specified, the "SyncTime" parameter can be omitted. In that case, the FMP will start playback 3 seconds after
receiving this command (changeable with SetSyncTime).

Return Value

Skip Command

Description
to skip from the current media to the next in a playlist.

If the playlist playback is stopped, skipping will not be performed.
Also, if there is only one piece of media registered in the playlist, it will not be skipped and will stop playing.
(When the loop setting is turned on, it returns to the beginning.)

Request
Parameter Description Remarks

Example Return
On Success
OK

On Failure
NG

*: NG may be due to the following factors.
　- Playlist not specified -> Playlist not selected
　- Playlist playback position is outside the playlist range -> Out of range PlayPosition: (Specified playback position)
　- Another command is in progress -> Other command running

Command Skip

NG Parameter Cause of NG

Parameter Description Remarks
OK/NG Result

PlayPosition
Playlist playback position (elapsed time from the
beginning)

Play from the beginning with 0

Example Request
When specifying synchronized playback start time: Seek SyncTime=1727669330084099&PlayPosition=0
When not specifying synchronized playback start time: Seek PlayPosition=0

*1: The separator between UDP commands and parameters is " " (space), the separator between parameters is "&", and the parameter value is after "=".
*2: If the playback position of the playlist is set to something other than 0, it can be played or moved from the middle of the playlist.
*3: If synchronized playback start time is not specified, the "SyncTime" parameter can be omitted. In that case, the FMP will start playback 3 seconds after
receiving this command (changeable with SetSyncTime).

Return Value

SyncTime

Regeneration start time (LinuxTime + usec)
Linux time format (including usec after the decimal point) multiplied
by 1000000

Also, include the time difference in GetSystemTime

Request
Parameter Description Remarks
Seek Command

Specify a time that is at least 1 seconds ahead of the current time

Command Seek

Description
To play a playlist from the playlist playback position specified during playlist playback.

If playlist playback is stopped, it will only move to the playback position of the specified playlist.

Playlist Selection

Required
〇
〇

Always
○

Playlist loop settings

Required
〇
〇

Always
○

Example Return
On Seccess
OK

On Failure
none

Parameter Description Remarks
OK Command Always [OK] is returnd

Example Request
Loop EnableLoop=0

*: The separator between UDP commands and parameters is " " (space), and the value of the parameter is after "=".

Return Value

Loop Command
EnableLoop Loop setting (0: no loop, 1: with loop) No loop(stop at the end),loop(play again from the beginning)

Description
To choose whether to loop the playlist playback within the playlist.

The initial value is no loop (stop at end).

Request
Parameter Description Remarks

Example Return
On Success
OK

On Failure
NG

*: NG may be due to the following factors.
　- The playlist does not exist in FMP.

Command Loop

Parameter Description Remarks
OK/NG Result

Example Request
SelectPlayList PlayListName=Playlist01

*: The separator between UDP commands and parameters is " " (space), and the value of the parameter is after "=".

Return Value

SelectPlayList Command
PlayListName Playlist name to select

Description
To select a playlist to play in a playlist registered in FMP.

Request
Parameter Description Remarks

Command SelectPlayList

Restarting the Module

Required
〇

Always
○

Reload a playlist

Required
〇

Always
○

Example Return
On Seccess
OK

On Failure
none

Parameter Description Remarks
OK Result Always [OK] is returnd

Example Request
ResetPlaylist

Return Value

ResetPlaylist Command

Description
To update the playlist information imported into the module running in the FMP.

* Please use this command when "Replace Playlist".
　Further, when this Command is executed during playlist playback, playlist playback is stopped. After that, you need to select a playlist.

Request
Parameter Description Remarks

Example Return
On Seccess
OK

On Failure
none

Command ResetPlaylist

Parameter Description Remarks
OK Result Always [OK] is returnd

Example Request
DisconnectReq

Return Value

DisconnectReq Command

Description
To restart the Timeline modules running in the FMP.

* Please restart the Timeline module when you replace the playlist.

Request
Parameter Description Remarks

Command DisconnectReq

FMP Time Adjustment Setting

Required
〇

Always
○

Retrieving Playlist Information

Required
〇

Always
○

On Failure
none

Specify an integer for the number of seconds. If less than 3 seconds,
synchronized playback may not be possible.

Time 〇 Time adjustment value

Example Return
On Seccess
OK

OK Result Always [OK] is returnd

Example Request
SetSyncTime Time=5

*: The separator between UDP commands and parameters is " " (space), and the value of the parameter is after "=".

Return Value
Parameter Description Remarks

Example Return
On Seccess
OK Playlist1=Weekday&Playlist2=Weekend

*1: The separator between the execution result and the parameter is " " (space), the delimiter between the parameters is "&", and the value of the parameter
is after "=".
*2: In the above example, only two playlists are registered, so there is only "Playlist2".

OK Playlist1=Weekday--(761e4d70-d6c7-4abd-aed0-889288240ef1).list&Playlist2=Weekend--(ea51550d-627f-48da-9776-f5808c0aac23).list

*3: When the debug option is specified, the ID part is added as described above.

On Failure
NG

*: NG may be due to the following factors.
　- None of the playlists are registered.

Playlist3 Playlist name Name is not available if NG or unregistered
Playlist4 Playlist name Name is not available if NG or unregistered

Playlist1 Playlist name Name is not available if NG or unregistered
Playlist2 Playlist name Name is not available if NG or unregistered

Parameter Description Remarks
OK/NG Result

Example Request
GetPlaylistInfo

GetPlaylistInfo -d

*: The separator between Command and parameter is " " (space).

Return Value

GetPlaylistInfo Command
-d Debugging Option Notify with the ID part used in Visual Software Suite (VSS)

Description
To get a list of playlist names registered in FMP.

Request
Parameter Description Remarks

Command GetPlaylistInfo

Command SetSyncTime

Description
Command to change the time adjustment value for command execution within the FMP when synchronized playback start time is not specified.
*The initial value is set to 3 seconds.
Also, this adjustment value will revert to 3 seconds when the FMP is restarted or the Timeline module is restarted.

Request
Parameter Description Remarks
SetSyncTime Command

Retrieving media information in a playlist

Required
〇

〇

Always
○
〇
〇

Retrieving playlist playback status

Required
〇

Always
○
○
○
○

On Failure
NG Playlist=&CurrentPosition=&Loop=0

*: NG may be due to the following factors.
　- Playlist is not specified.

Example Return
On Seccess
OK Playlist=Weekday&CurrentPosition=100000000&Loop=0

*1: The separator between the execution result and the parameter is " " (space), the delimiter between the parameters is "&", and the value of the parameter
is after "=".

OK Playlist=PLAYLIST1&CurrentPosition=STOP&Loop=0

*2: When playlist playback is stopped (after Pause or Stop is executed), the current position of the playlist is notified by "STOP".

CurrentPosition Playlist current location When playback is stopped, "STOP" and other NGs are blank
Loop Loop setting (0: no loop, 1: with loop) No loop(stop at the end),loop(play again from the beginning)

OK/NG Result
Playlist Playlist name

Example Request
GetPlayingInfo

Return Value
Parameter Description Remarks

Request
Parameter Description Remarks
GetPlayingInfo Command

On Failure
NG Playlist=PLAYLIST1&Medianum=0

*: NG may be due to the following factors.
　- The playlist does not exist.

Command GetPlayingInfo

Description
To get the status of playlist playback in FMP (determined by the current position of the playlist).

DurationN Duration of the "N"th media The unit is "seconds"

Example Return
On Seccess
OK Playlist=PLAYLIST1&Medianum=3&Media1=MEDIA1.mp4&Duration1=60&Media2=MEDIA2.mp4&Duration2=60&Media3=MEDIA3.jpg&Duration3=10

*1: The separator between the execution result and the parameter is " " (space), the delimiter between the parameters is "&", and the value of the parameter
is after "=".
*2: In the above example, only three media are registered in the playlist, so there are only "Media3" and "Duration3".
*3: If a large number of media is registered in the playlist, the maximum transmission and reception size: 1024 bytes may be exceeded, but in that case, up
to 1024 bytes will be notified.

・・・ ・・・
MediaN "N"th Media Name

Media2 Second media name
Duration2 Duration of the second media The unit is "seconds"

Media1 First Media Name
Duration1 Duration of the first media The unit is "seconds"

Playlist Playlist name set at the time of Request
Medianum Number of media in the playlist

Parameter Description Remarks
OK/NG Result

Example Request
GetEachPlaylistInfo Playlist=Weekday

*: The separator between Command and parameter is " " (space), and the value of the parameter is after "=".

Return Value

GetEachPlaylistInfo Command

Playlist
The name of the playlist for which you want to retrieve
media information

You don't need the ID part used by VisualSoftwareSuite (VSS)

Description
To get media information (media name, playback time) in a playlist registered in FMP.

Request
Parameter Description Remarks

Command GetEachPlaylistInfo

●Sample code（python）

If not specifying a synchronized playback start time, change the red-colored part of the code on the right from the code on the left. (Strikeout parts should be deleted)

*When specifying a synchronized playback start time *When not specifying a synchronized playback start time (red text)

import socket

import time

M_SIZE = 1024

Execution conditions

・Python can be executed

・LAN connection to FMP

Pre-Execution Preparation

Set the following items according to the FMP to be connected

The address of the FMP and the port number of the connection destination (the port number is fixed)

Use the broadcast address (e.g., 192.168.0.255) when connecting to multiple FMPs

fmp_address = ('192.168.0.11', 65432)

Playlist name to be selected in the playlist set for the FMP

PLAYLIST = 'Playlist01'

How to execute

(1) At the DOS prompt, move to the folder where this file (test_client.py) is located

(2) Execute "py test_client.py"

(3) Enter the number of the Command you want to execute

(4) If you want to change the parameters of this file (test_client.py),

please end with "0" once, edit this file, and continue from (2)

GetSystemTime

CurrentTimeVisual Software Suite（VSS）is set automatically

GetSystemTime = 'GetSystemTime CurrentTimeVss='

SelectPlayList

Change the playlist name to the actual name

You can also check it with GetPlayingInfo

SelectPlayList = 'SelectPlayList PlayListName='

Loop

0: No LOOP / 1: With LOOP

ENABLELOOP = '0'

Loop = 'Loop EnableLoop='

Play

SyncTime is automatically set by adding the diff_time (difference between FMP time) and marge_time (FMP processing time).

When resuming playback after StopCommand, set the stop position in the response frame of StopCommand PLAY_POSITION

Play1 = 'Play SyncTime=' Play1 = 'Play'

Play2 = '&PlayPosition=0' Play2 = '&PlayPosition=0'

Play3 = '&PlayPosition=' Play3 = ' PlayPosition='

diff_time = 0 diff_time = 0

marge_time = 2000000 marge_time = 1000000

PLAY_POSITION = 0

Pause

StopPosition sets to 0 (the beginning of the playlist)

Since the position during playback on the FMP is unknown, it is hardcoded.

Pause = 'Pause StopPosition=15000000' # Always stop at setting position

Pause2 = 'Pause StopPosition=' # for Modify stop position

pause_position = 0

Seek

PlayPosition sets to 0 (the beginning of the playlist)

SyncTime is automatically set by adding the diff_time (difference between FMP time) and marge_time (FMP processing time).

Seek1 = 'Seek SyncTime=' Seek1 = 'Seek'

Seek2 = '&PlayPosition=' Seek2 = ' PlayPosition='

seek_position = 0

Skip

SyncTime is automatically set by adding the diff_time (difference between FMP time) and marge_time (FMP processing time).

Skip = 'Skip SyncTime=' Skip = 'Skip'

DisconnectReq

Disconnect from FMP. When the FMP side disconnects the connection, it restarts the timeline

Reload the playlist by restarting the timeline

(Since the information cannot be imported into Timeline just by sending the playlist, restart Timeline to import the playlist)

DisconnectReq = 'DisconnectReq'

Stop

This Command will stop at the position at which the Command is received

Also, notify the stop position in the response frame (used when resuming playback)

Stop = 'Stop'

Get Playback information

GetPlayingInfo = 'GetPlayingInfo'

GetPlaylistInfo = 'GetPlaylistInfo'

GetEachPlaylistInfo = 'GetEachPlaylistInfo Playlist='

ResetPlaylist = 'ResetPlaylist'

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

while True:

 try:

 print('')

 print('Input any Number')

 print('')

 print('1:GetSystemTime') print('1:GetSystemTime')

 print('2:SelectPlayList')

 print('3:Loop')

 print('4:Play')

 print('5:Pause')

 print('6:Stop')

 print('7:Seek')

 print('8:Skip')

 print('9:DisconnectReq - timeline restart -')

 print('0:Exit')

 print('')

 print('a:GetPlaylistInfo')

 print('b:GetPlayingInfo')

 print('c:GetEachPlaylistInfo')

 print('d:ResetPlaylist')

 print('') print('e:SetSyncTime')

 message = input()

 if message == 'end':

 print('closing socket')

 sock.close()

 print('done')

 break

 else:

 if message == '1': if message == '1':

 start_u = int(time.time() * 1000000) start_u = int(time.time() * 1000000)

 print("send : " + GetSystemTime + str(start_u)) print("send : " + GetSystemTime + str(start_u))

 send_data = GetSystemTime + str(start_u) send_data = GetSystemTime + str(start_u)

 send_len = sock.sendto(send_data.encode('utf-8'), fmp_address) send_len = sock.sendto(send_data.encode('utf-8'), fmp_address)

 elif message == '2':

 print("send : " + SelectPlayList + PLAYLIST)

 send_data = SelectPlayList + PLAYLIST

 send_len = sock.sendto(send_data.encode('utf-8'), fmp_address)

 elif message == '3':

 print('')

 print('Input any Number')

 print('')

 print('1:Loop disable')

 print('2:Loop enable')

 print('')

 selectnum = input()

 if selectnum == '1':

 ENABLELOOP = '0'

 elif selectnum == '2':

 ENABLELOOP = '1'

 else :

 continue

 print("send : " + Loop + ENABLELOOP)

 send_data = Loop + ENABLELOOP

 send_len = sock.sendto(send_data.encode('utf-8'), fmp_address)

 elif message == '4':

 print('')

 print('Input any Number')

 print('')

 print('1:Play from start position')

 print('2:Play from stop position')

 print('')

 selectnum = input()

 if selectnum == '1':

 PLAY_POSITION = 0

 elif selectnum == '2':

 PLAY_POSITION = PLAY_POSITION

 else :

 continue

 start_u = int((time.time() * 1000000) + marge_time - diff_time) start_u = int((time.time() * 1000000) + marge_time - diff_time)

 print("send : " + Play1 + str(start_u) + Play3 + str(PLAY_POSITION)) print("send : " + Play1 + Play3 + str(PLAY_POSITION))

 send_data = Play1 + str(start_u) + Play3 + str(PLAY_POSITION) send_data = Play1 + Play3 + str(PLAY_POSITION)

 send_len = sock.sendto(send_data.encode('utf-8'), fmp_address)

 play_start_time = start_u + diff_time play_start_time = start_u + diff_time

 # PauseCommand needs to specify the Pause position

 # (in the sample below, the elapsed time from the Play start time is forcibly set to the Pause position)

 elif message == '5':

 pause_position = int(((time.time() * 1000000) - play_start_time) + PLAY_POSITION) pause_position = 10000000

 print("send : " + Pause2 + str(pause_position))

 send_data = Pause2 + str(pause_position)

 send_len = sock.sendto(send_data.encode('utf-8'), fmp_address)

 PLAY_POSITION = pause_position

 elif message == '6':

 print("send : " + Stop)

 send_data = Stop

 send_len = sock.sendto(send_data.encode('utf-8'), fmp_address)

 elif message == '7':

 print('')

 print('Input Seek position(0～[us])')

 print('')

 selectnum = input()

 seek_position = int(selectnum)

 start_u = int(time.time() * 1000000 + marge_time - diff_time) start_u = int(time.time() * 1000000 + marge_time - diff_time)

 print("send : " + Seek1 + str(start_u) + Seek2 + str(seek_position)) print("send : " + Seek1 + Seek2 + str(seek_position))

 send_data = Seek1 + str(start_u) + Seek2 + str(seek_position) send_data = Seek1 + Seek2 + str(seek_position)

 send_len = sock.sendto(send_data.encode('utf-8'), fmp_address)

 elif message == '8':

 start_u = int(time.time() * 1000000 + marge_time - diff_time) start_u = int(time.time() * 1000000 + marge_time - diff_time)

 print("send : " + Skip + str(start_u)) print("send : " + Skip)

 send_data = Skip + str(start_u) send_data = Skip

 send_len = sock.sendto(send_data.encode('utf-8'), fmp_address)

 PLAY_POSITION = 0

 elif message == '9':

 print("send : " + DisconnectReq)

 send_data = DisconnectReq

 send_len = sock.sendto(send_data.encode('utf-8'), fmp_address)

 elif message == '0':

 print('closing socket')

 sock.close()

 print('done')

 break

 elif message == 'a':

 print("send : " + GetPlaylistInfo)

 send_data = GetPlaylistInfo

 send_len = sock.sendto(send_data.encode('utf-8'), fmp_address)

 elif message == 'b':

 print("send : " + GetPlayingInfo)

 send_data = GetPlayingInfo

 send_len = sock.sendto(send_data.encode('utf-8'), fmp_address)

 elif message == 'c':

 print('')

 print('Input Playlist name')

 print('')

 selectpl = input()

 print("send : " + GetEachPlaylistInfo + str(selectpl))

 send_data = GetEachPlaylistInfo + str(selectpl)

 send_len = sock.sendto(send_data.encode('utf-8'), fmp_address)

 # Even if you don't use ResetPlaylist, you can substitute DisconnectReq

 elif message == 'd':

 print("send : " + ResetPlaylist)

 send_data = ResetPlaylist

 send_len = sock.sendto(send_data.encode('utf-8'), fmp_address)

 elif message == 'e':

 print('')

 print('Input Sync Time(0～[s])')

 print('')

 synctime = input()

 print("send : SetSyncTime Time=" + str(synctime))

 send_data = "SetSyncTime Time=" + str(synctime)

 send_len = sock.sendto(send_data.encode('utf-8'), bload_addres)

 else:

 continue

 rx_meesage, addr = sock.recvfrom(M_SIZE)

 print(f"recive: {rx_meesage.decode(encoding='utf-8')}")

 if message == '1':

 fmp_kekka = rx_meesage.decode(encoding='utf-8')[0:2]

 if fmp_kekka == 'OK':

 fmp_time = rx_meesage.decode(encoding='utf-8')[-17:-1]

 diff_time = int(start_u) - int(fmp_time)

 print("diff_time : " + str(diff_time) + " us")

 else :

 continue

 elif message == '6':

 fmp_kekka = rx_meesage.decode(encoding='utf-8')[0:2]

 if fmp_kekka == 'OK':

 fmp_time = rx_meesage.decode(encoding='utf-8')[19:-1]

 PLAY_POSITION = int(fmp_time)

 print("PLAY_POSITION : " + str(PLAY_POSITION) + " us")

 else :

 continue

 except KeyboardInterrupt:

 print('closing socket')

 sock.close()

 print('done')

 break

	ALL
	FMP50 series UDP Commands User Manual.pdf
	ALL
	空白ページ
	com_REQ12 series.pdf
	コピー
	temp

	ControlCommands_Master_057.pdf
	temp

