UDP Commands User Manual

Model No. ET-FMP50
ET-FMP20
ET-SBFMP10

Panasonic

(2025-02)

HEHow to use UDP commands

eOverview
Media playback operations using the Timeline function of the media processor (hereinafter referred to as "FMP")
can be performed with commands using UDP communication.
Media playback is performed on a playlist (*) basis.
Up to four playlists can be registered to FMP, and you can switch between registered playlists to perform media playback operations.

It also allows synchronous playback of media by multiple FMPs.

*Playlists can contain multiple individual media (videos and still images), and playback operations can be performed as a single piece of media.

eConfiguration diagram

HDMI
O FMP50/
FMP20

Visual

Projector Software
Sl UDP Command
Projection A.pllcatlon
WEB Browser S

SBFMP10

* This is the part that is created by the user

e Create playlists using Visual Software Suite (VSS) and send playlists to FMP
*For details, refer to the Visual Software Suite (VSS) manual.
1. Playlist creation is done on the playlist editing screen below.

(1) Add media to be registered in the playlist.
(2) Create a playlist.

(3) Register the media added in (1) to the playlist created in (2).

y New Project 18

Edit Playlist ~ Online Preview

Search

1G_JOY_4K_SDR_J..mp4 00:01:38

I— = 3840x2160, 60fps, 1.1GB, H264
>

Playlist

Schedule

169 M oooooo O T

] PlaylistO1 2 00:00:10 00:00:20 00:00:30 00:00:40
II|lIII|IIIlIIII|IIIIIIIIIlIllIlIIIIIIIIIIII

1G_JOY_4K SDR JPN.mp4
A 00:01:38

H264
(3)

SV -+ Add Media (2) .

2. The created playlist will be sent to FMP on the online preview screen.
(1) Add a group to send the playlist to.
2) Add FMP as a media processor to send playlists.
3) Add the playlist created by the playlist editor.
4) After (3) is implemented, a pop-up window for data transfer will appear, so click "OK" to send the playlist to FMP.

5) If the pop-up does not appear, click "Update Playlist" to display the pop-up (4). (Hereafter, the same operation as (4) is performed.)
' New Project 18

(
(
(
(

Edit Playlist Online Preview

@ Send Playlist

Hom S — T —
.Hl + Add Group ‘ ‘ () Update All

On-site

A~ Group01 Play on Media Proc. '.:
=
baist 0 =FMPO1 192.168.09

nﬂ + Add Media Proc.
Sched

Transfer data to Media Proc.?
m_ PlaylistO1

00:01:38

Unselected

The data transfer will update Media Proc. data.
(3) + Add Playlist (M 0 Update Playlist

@®In the WEB (FMP Series Control Window),how to set the Timeline mode

1) Use a web browser to access the IP address of the FMP.

2) Click "Player" — "Settings" from the left menu to move to the following screen.

4) Click the "Set" button.

(

(

(3) Select "Timeline" from "Player" in the player settings.

(

(5) After a few seconds, the player "Timeline" starts on FMP.
M Hf web Control Window % +

& C R | AtFUTdRELL 192168010 (1)

FMP Series Control Window

Status > Player Settings

EV(y v Player

Settings Correction Settings

Audio Control Output Mode
Stream List Video Signal

Advanced Settings Audio Output
Playlist

Language
System
Other

Timeline

Schedule
NDI(NDI Decoder)

Timeline
AUIU

HDMI OUT

®In the WEB (FMP Series Control Window), Multiple FMP Synchronized Settings

* This section describes the settings for synchronized media playback by two media processors. Please refer to the FMP manual for details.

* Secondary side

(1) With a web browser, access the IP address of the FMP to be used as a secondary.

(2) Click "System" — "Date and Time" from the left menu to move to the following screen.

(3) Select "SoftwareSync" from "Synchronization Protocol" for date and time,

Set the "Domain Number" in the player settings to any value ("111" here),

Select "Secondary" from "Primary/Secondary".
(@ Click the *Set” button

0 Hf web Control Window x

< G @ A wFUFEEsL 192168010 | (1)

FMP Series Control Window

Status Time Zone

Player Location

Language

Date and Time
System

Network
Account

Current Time
OB Sync Protocol
Domain No.

Date and Time Primary / Secondary

Initialize
Reboot
Details

Other

2025/09/25 09:57:27
SoftwareSync v

Set

(4)

Set

* Primary side
(1) Use a web browser to access the IP address of the FMP to be the primary.
(2) Click "System" — "Date and Time" from the left menu to move to the following screen.
(3) Select "SoftwareSync" from "Synchronization Protocol" for date and time,
Set the "Domain Number" in the player settings to any value ("111" here),
Select "Primary" from "Primary/Secondary".
(4) Click the "Set" button.
= . e — x+
| < G M A eFUFEEsL 192168010 | (1)

FMP Series Control Window

Status Time Zone

Player Location
Set
Language

Date and Time
System

Network
Account

Current Time 2025/09/25 10:08:14
Sync Protocol SoftwareSync v
Domain No.

Date and Time Primary / Secondary Primary

Initialize NTP Synchronization OFF
Reboot NTP Server
Details Date

Other Time

e UDP Command Specification

FMP side connection conditions
The FMP side is waiting at the following sockets.

IP address: IP address set in FMP
Listening port number: 65432
Source address: INADDR_ANY

Maximum transmit and receive size: 1024byte

List of operation commands &R Command—&
command description command description
GetSystemTime Time adjustment between UDP GetPlaylistinfo Retrieving Playlist Information

command execution side and FMP side

Play Playlist playback GetEachPlaylistinfo [Retrieving media information in a playlist

Pause Stop playlist playback GetPlayinglnfo Retrieving playlist playback status
Stop playback at the specified position

Stop Stop playlist playback
Playback stops when the command is received

(You do not need to specify the stop position.)

Seek Seeking playlist playback

Skip Skipping media in playlists
SelectPlayList Playlist Selection

Loop Playlist loop settings
DisconnectReq Restarting the Timeline Module
ResetPlaylist Reload a playlist

SetSyncTime FMP Time adjustment setting

(initial value is 3 seconds)

Steps to play a playlist (when specifying a synchronized playback start time)

[Prosessing Image]

Specified time elapsed
|

[\
FMP Time y ‘ ~ I

PC Time

~

GetSystemTime (Command) Play (Command)

(requesting time difference of internal clock)

(1) Execute GetSystemTime (time adjustment between UDP command execution side and FMP side)

(2) Obtain the time difference between the internal clock of the PC executing the UDP command and the FMP side, and add it to the parameter
"playback start synchronization time" of the subsequent UDP command.

(3) Execute SelectPlayList (playlist selection)

(4) Execute Loop (playlist loop setting)

(5) Execute Play (playlist playback)

After that, the playlist playback is stopped with the Pause, Stop, Seek, and Skip commands.

[Command Example]

(1) GetSystemTime CurrentTimeVss=1715237197598000
(2) —
(3) SelectPlayList PlayListName=Playlist01
(

(

4) Loop EnableLoop=0

)
)
)
5) Play SyncTime=1727684152203481&PlayPosition=0

Steps to Play a Playlist (when not specifying a synchronized playback start time)
[Prosessing Image]

No need to execute (3 seconds elapsed (changeable with SetSyncTime))
|

Play (Command)

FMP Time

PC Time

(no SyncTime)

(1) Execute SelectPlayList (playlist selection)
(2) Execute Loop (playlist loop setting)
(3) Execute Play (playlist playback)

After that, the playlist playback is stopped with the Stop, Seek, and Skip commands.

The FMP will perform playback, etc., 3 seconds after receiving the command (modifiable with SetSyncTime).

[Command Example]

(1) SelectPlayList PlayListName=Playlist01
(2) Loop EnableLoop=0

(3) Play

Checking the playback status of a playlist

(1) Set the playlist playback state

(2) Execute GetPlayinginfo (Get playlist playback status) at any time

(3) Judge the playback status of the playlist by increasing the CurrentPosition (current position of the playlist)
in the return of GetPlayingInfo (get playlist playback status)

Reload a playlist after updating a playlist

(1) Perform playlist update in FMP from Visual Software Suite (VSS)

(2) Execute DisconnectReq (module restart) or ResetPlaylist (reload playlist)

(3) Execute GetPlaylistinfo (to get playlist information) and GetEachPlaylistinfo (to get media information in the playlist)
and confirm that the playlist has been updated

(4) Execute "Procedure for playlist playback”

@ API List of UDP Command

Time adjustment between UDP command execution side and FMP side

[Command |GetSystemT ime

Description |

To determine the time difference between the internal clock on the PC executing the UDP command and the FMP side.

The time difference should be calculated in microseconds, and this value should be added to the parameter “playback start synchronization time” of the
subsequent UDP command.

Request

Parameter Required |Description Remarks

GetSystemT ime @) Command

CurrentTimeVss o UDP Commands execution time(LinuxTime + usec) Linux time format (including usec after the decimal point) multiplied

by 1000000

Example Request |

GetSystemTime CurrentTimeVss=1715237197598000

*1: The separator between UDP commands and parameters is “ “ (space), and the value of the parameter is after “=".
*2: 1715237197598000=2024,/05/09 06:46:37. 598000

Return Value

Parameter Always |Description Remarks

0K O Result Always [0K] is returnd

CurrentTimeVss O Execution time set at the time of request

CurrentT imeFmp o FWP Time (Linux time + usec) Linux time format (including usec after the decimal point) multiplied

by 1000000

Example Return
On Success

OK CurrentTimeVss=1715237197598000&CurrentTimeFmp=1715237196004200

*1: The separator between the execution result and the parameter is “ “ (space), the delimiter between the parameters is “&”, and the value of the parameter
is after "=".
*2: 1715237197598000=2024,/05/09 06:46:37. 598000

1715237196004200=2024,/05/09 06:46:36. 004200

On Failure |
none

Playlist playback
[Command [Play
Description |

To play the specified playlist registered in FMP

Request
Parameter Required |Description Remarks
Play @) Command
Regeneration start time (LinuxTime + usec) Linux time format (including usec after the decimal point) multiplied
by 1000000
SyncTime Specify a time that is at least 1 seconds ahead of the current time
Also, include the time difference in GetSystemTime
. Playlist playback position (elapsed time from the Linux time format (including usec after the decimal point) multiplied
PlayPosition ,
beginning) by 1000000

Example Request |

When specifying synchronized playback start time: Play SyncTime=1727684152203481&P|ayPosition=0
When not specifying synchronized playback start time: Play PlayPosition=0 or Play

*1: The separator between the execution result and the parameter is “ “ (space), the delimiter between the parameters is “&”, and the value of the parameter
is after "=".

*2: If the playback position of the playlist is set to something other than 0, playback can be started from the middle of the playlist.

*3:1f synchronized playback start time is not specified, the “SyncTime” and “PlayPosition” parameters can be omitted. In that case, the FMP will start
playback from the beginning of the playlist 3 seconds after receiving this command (changeable with SetSyncTime).

Return Value

Parameter Always |Description Remarks
0K/NG O Result
NG Parameter Cause of NG

Example Return

On Success

0K

On Failure |
NG

*: NG may be due to the following factors
- Playlist is not specified.
- The playback start synchronization time points to the past.
— The playback position of the playlist points outside the range of the playlist.

Stop playlist playback

[Command |Pause

Description |

To stop playback of a playlist at the specified stop position of the playlist.
Stop while displaying the video of the stop position

Request

Parameter Required |Description Remarks

Pause @) Command

StopPosition @) Playlist stop position (elapsed time from the beginning) t;n$308638 format (including usec after the decimal point) multiplied

Example Request |

Pause StopPosition=3800490

*. The separator between UDP commands and parameters is ” ” (space), and the value of the parameter is after "=".

Return Value

Parameter Always |Description Remarks

0K/NG @) Result

Example Return

On Success

0K

On Failure |
NG

*: NG may be due to the following factors
- The stop position of the playlist points outside the range of the playlist.

Stop playlist playback

[Command [Stop

Description |

To stop playback of the playlist at the position at the time of receiving the command.
The video at the time of receiving the command is displayed and stopped.

Request
Parameter Required |Description Remarks
Stop @) Command

Example Request |

Stop

Return Value

Parameter Always |Description Remarks

0K/NG O Result
Playlist stop position (elapsed time from the beginning) t;n?éogégg format (including usec after the decimal point) multiplied

C tPositi . _ .
urrentrosition O If you set this value to the playback position of playlist playback

the playlist will be played from the stopped position

Example Return
On Success

OK CurrentPosition=10000000

*1: The separator between the execution result and the parameter is ” “ (space), and the value of the parameter is after "=".
*2: 10000000 microseconds = 10 seconds

On Failure |

NG CurrentPosition=-1

*: NG may be due to the following factors
- Playlist is not playing.
- Playback stop in FMP is in progress

Seeking playlist playback

[Command [Seek

Description |

To play a playlist from the playlist playback position specified during playlist playback

[f playlist playback is stopped, it will only move to the playback position of the specified playlist.

Request

Parameter Required |Description Remarks

Seek @) Command

Regeneration start time (LinuxTime + usec) Linux time format (including usec after the decimal point) multiplied

by 1000000

SyncTime Specify a time that is at least 1 seconds ahead of the current time
Also, include the time difference in GetSystemTime

PlayPosition @) ELZ¥A$?Eg?Iayback position (elapsed time from the Play from the beginning with 0

Example Request |

When specifying synchronized playback start time: Seek SyncTime=1727669330084099&P|ayPosition=0
When not specifying synchronized playback start time: Seek PlayPosition=0

*1: The separator between UDP commands and parameters is “ “ (space), the separator between parameters is “&”, and the parameter value is after “=".

*2. [f the playback position of the playlist is set to something other than 0, it can be played or moved from the middle of the playlist.

*3: If synchronized playback start time is not specified, the “SyncTime” parameter can be omitted. In that case, the FMP will start playback 3 seconds after
receiving this command (changeable with SetSyncTime).

Return Value

Parameter Always |Description Remarks
0K/NG O Result
NG Parameter Cause of NG

Example Return

On Success

0K

On Failure |
NG

*: NG may be due to the following factors
- Playlist not specified -> Playlist not selected
- Playlist playback position is outside the playlist range => Out of range PlayPosition: (Specified playback position)
- Another command is in progress —> Other command running

Skipping media in playlists

[Command [Skip

Description |

to skip from the current media to the next in a playlist.

If the playlist playback is stopped, skipping will not be performed.
Also, if there is only one piece of media registered in the playlist, it will not be skipped and will stop playing.
(When the loop setting is turned on, it returns to the beginning.)

Request
Parameter Required |Description Remarks
Skip @) Command

Example Request |

Skip

*1: The separator between UDP commands and parameters is “ “ (space), and the value of the parameter is after “=".
*2:1f synchronized playback start time is not specified, the “SyncTime” parameter can be omitted. In that case, the FMP will start playback 3 seconds after
receiving this command (changeable with SetSyncTime).

Return Value

Parameter Always |Description Remarks
0K/NG O Result
NG Parameter Cause of NG

Example Return

On Success

0K

On Failure |
NG

*: NG may be due to the following factors
- Playlist not specified —> Playlist not selected
- Playlist is not playing —> Playlist not playing
— Another command is in progress —> Other command running

Playlist Selection

[Command [SelectPlayList

Description |

To select a playlist to play in a playlist registered in FMP

Request

Parameter Required |Description Remarks
SelectPlayList @) Command

PlayListName @) Playlist name to select

Example Request |

SelectPlayList PlayListName=PlaylistO1

*. The separator between UDP commands and parameters is ” ” (space), and the value of the parameter is after "=".

Return Value

Parameter Always |Description Remarks

0K/NG O Result

Example Return

On Success

0K

On Failure |
NG

*: NG may be due to the following factors
- The playlist does not exist in FMP

Playlist loop settings

[Command [Loop

Description |

To choose whether to loop the playlist playback within the playlist.

The initial value is no loop (stop at end).

Request

Parameter Required |Description Remarks

Loop @) Command

EnablelLoop O Loop setting (0: no loop, 1: with loop) No loop(stop at the end), loop(play again from the beginning)

Example Request |

Loop Enableloop=0

*. The separator between UDP commands and parameters is “ “ (space), and the value of the parameter is after "=".

Return Value

Parameter Always |Description Remarks

0K O Command Always [OK] is returnd

Example Return

On Seccess
0K
On Failure

none

Restarting the Module

[Command

[DisconnectReq

Description

To restart the Timeline modules running in the FMP

* Please restart the Timeline module when you replace the playlist.

Request

Parameter Required |Description Remarks

DisconnectReq @) Command

Example Request |

DisconnectReq

Return Value

Parameter Always |Description Remarks

0K O Result Always [0K] is returnd

Example Return

On Seccess

0K

On Failure

none

Reload a playlist

[Command

|[ResetPlaylist

Description

To update the playlist information imported into the module running in the FMP

* Please use this command when “Replace Playlist”
Further, when this Command is executed during playlist playback, playlist playback is stopped. After that, you need to select a playlist.

Request

Parameter Required |Description Remarks

ResetPlaylist @) Command

Example Request |

ResetPlaylist

Return Value

Parameter Always |Description Remarks

0K O Result Always [OK] is returnd

Example Return

On Seccess
0K
On Failure

none

FMP Time Adjustment Setting

[Command [SetSyncTime

Description |

Command to change the time adjustment value for command execution within the FMP when synchronized playback start time is not specified.
*The initial value is set to 3 seconds
Also, this adjustment value will revert to 3 seconds when the FMP is restarted or the Timeline module is restarted.

Request
Parameter Required |Description Remarks
SetSyncTime @) Command
. . . Specify an integer for the number of seconds. If less than 3 seconds
Time @) Time adjustment value . X
synchronized playback may not be possible

Example Request |

SetSyncTime Time=5

*. The separator between UDP commands and parameters is ” ” (space), and the value of the parameter is after "=".

Return Value

Parameter Always |Description Remarks

0K O Result Always [0K] is returnd

Example Return
On Seccess

0K

On Failure

none

Retrieving Playlist Information

[Command |GetPlaylistInfo

Description |

To get a list of playlist names registered in FMP

Request

Parameter Required |Description Remarks

GetPlaylistInfo @) Command

—-d Debugging Option Notify with the ID part used in Visual Software Suite (VSS)

Example Request |

GetPlaylistInfo
GetPlaylistInfo —-d

*: The separator between Command and parameter is “ ” (space).

Return Value

Parameter Always |Description Remarks

0K/NG O Result

Playlistl Playlist name Name is not available if NG or unregistered
Playlist2 Playlist name Name is not available if NG or unregistered
Playlist3 Playlist name Name is not available if NG or unregistered
Playlist4 Playlist name Name is not available if NG or unregistered

Example Return
On Seccess

OK Playlist1=Weekday&Playlist2=Weekend

*1: The separator between the execution result and the parameter is “ “ (space), the delimiter between the parameters is “&”, and the value of the parameter
is after "=".

*2: In the above example, only two playlists are registered, so there is only “Playlist2”

OK Playlist1=Weekday—— (761e4d70-d6c7-4abd—aed0-889288240ef1). | ist&Playlist2=Weekend——(eab1550d-627f-48da-9776-f5808c0aac23). | ist

*3: When the debug option is specified, the ID part is added as described above.

On Failure |

NG

*: NG may be due to the following factors
— None of the playlists are registered.

Retrieving media information in a playlist

[Command |GetEachPlaylistInfo

Description |

To get media information (media name, playback time) in a playlist registered in FMP

Request

Parameter Required |Description Remarks

GetEachPlaylistInfo O Command

Playlist @) Thelname of th? playlist for which you want to retrieve You don’ t need the ID part used by VisualSoftwareSuite (VSS)
media information

Example Request |

GetEachPlaylistInfo Playlist=Weekday

*. The separator between Command and parameter is ” “ (space), and the value of the parameter is after “=".

Return Value

Parameter Always |Description Remarks

OK/NG @) Result

Playlist @) Playlist name set at the time of Request

Medianum @) Number of media in the playlist

Medial First Media Name

Durationi Duration of the first media The unit is “seconds”
Media2 Second media name

Duration2 Duration of the second media The unit is “seconds”
MediaN “N“th Media Name

DurationN Duration of the “N“th media The unit is “seconds”
Example Return

On Seccess

OK Play!list=PLAYLIST1&Medianum=3&Medial=MEDIA1. mp4&Duration1=60&Media2=MEDIA2. mp4&Duration2=60&Media3=MEDIA3. jpg&Duration3=10

*1: The separator between the execution result and the parameter is “ “ (space), the delimiter between the parameters is “&”, and the value of the parameter
is after "=".

*2: In the above example, only three media are registered in the playlist, so there are only “Media3” and “Duration3”

*3: [f a large number of media is registered in the playlist, the maximum transmission and reception size: 1024 bytes may be exceeded, but in that case, up
to 1024 bytes will be notified.

On Failure |

NG Playlist=PLAYLIST1&Medianum=0

*: NG may be due to the following factors
- The playlist does not exist.

Retrieving playlist playback status

[Command |GetPlayinglInfo

Description |

To get the status of playlist playback in FMP (determined by the current position of the playlist).

Request
Parameter Required |Description Remarks
GetPlayingInfo @) Command

Example Request |

GetPlayingInfo

Return Value

Parameter Always |Description Remarks

0K/NG O Result

Playlist O Playlist name

CurrentPosition @) Playlist current location When playback is stopped, “STOP” and other NGs are blank
Loop @) Loop setting (0: no loop, 1: with loop) No loop(stop at the end), loop(play again from the beginning)

Example Return
On Seccess

OK Playlist=Weekday&CurrentPosition=100000000&Loop=0

*1: The separator between the execution result and the parameter is “ “ (space), the delimiter between the parameters is “&”, and the value of the parameter
is after "=".

OK Play!list=PLAYLIST1&CurrentPosition=STOP&Loop=0

*2: When playlist playback is stopped (after Pause or Stop is executed), the current position of the playlist is notified by “STOP”

On Failure |

NG Playlist=&CurrentPosition=&Loop=0

*: NG may be due to the following factors
- Playlist is not specified.

@®Sample code (python)
If not specifying a synchronized playback start time, change the red-colored part of the code on the right from the code on the left. (Strikeout parts should be deleted)

*When specifying a synchronized playback start time *When not specifying a synchronized playback start time (red text)
import socket

import time

M_SIZE = 1024

Execution conditions

#

- Python can be executed
+ LAN connection to FMP

Pre-Execution Preparation

#

Set the following items according to the FMP to be connected

#

The address of the FMP and the port number of the connection destination (the port number is fixed)
Use the broadcast address (e.g., 192.168.0.255) when connecting to multiple FMPs

fmp_address = ('1192.168.0.11', 65432)

#

Playlist name to be selected in the playlist set for the FMP

PLAYLIST = "Playlist01'

How to execute

1) At the DOS prompt, move to the folder where this file (test_client.py) is located
2) Execute "py test_client.py"

3) Enter the number of the Command you want to execute

4) If you want to change the parameters of this file (test_client.py),

please end with "0" once, edit this file, and continue from (2)
GetSystemTime

CurrentTimeVisual Software Suite (VSS) is set automatically
GetSystemTime = 'GetSystemTime CurrentTimeVss='

SelectPlayList

Change the playlist name to the actual name

You can also check it with GetPlayingInfo

SelectPlayList = 'SelectPlayList PlayListName='

Loop
#0: No LOOP / 1: With LOOP

ENABLELOOP ="0'
Loop = 'Loop EnableLoop="
Play

SyncTime is automatically set by adding the diff time (difference between FMP time) and marge_time (FMP processing time).
When resuming playback after StopCommand, set the stop position in the response frame of StopCommand PLAY_POSITION

Playl = 'Play SyncTime=' Playl = 'Play'

Play2 = '&PlayPosition=0' = Forer
Play3 = '&PlayPosition=" Play3 ="' PlayPosition='
diff time =0 difftime—=-0

marge_time = 2000000 marge—time—=1000600

PLAY_POSITION =0

Pause
StopPosition sets to 0 (the beginning of the playlist)
Since the position during playback on the FMP is unknown, it is hardcoded.

Pause = 'Pause StopPosition=15000000" # Always stop at setting position
Pause? = 'Pause StopPosition=' # for Modify stop position
pause_position =0

Seek
PlayPosition sets to 0 (the beginning of the playlist)
SyncTime is automatically set by adding the diff time (difference between FMP time) and marge_time (FMP processing time).

Seekl = 'Seek SyncTime=' Seekl = 'Seek’

Seek? = '&PlayPosition=" Seek? ="' PlayPosition="
seek _position =0

Skip
SyncTime is automatically set by adding the diff_time (difference between FMP time) and marge_time (FMP processing time).

Skip = 'Skip SyncTime="' Skip = 'Skip'

DisconnectReq
Disconnect from FMP. When the FMP side disconnects the connection, it restarts the timeline
Reload the playlist by restarting the timeline

(Since the information cannot be imported into Timeline just by sending the playlist, restart Timeline to import the playlist)

DisconnectReq = 'DisconnectReq'

Stop
This Command will stop at the position at which the Command is received

Also, notify the stop position in the response frame (used when resuming playback)

Stop = 'Stop'

Get Playback information

GetPlayingInfo = 'GetPlayingInfo'

GetPlaylistinfo = 'GetPlaylistinfo'
GetEachPlaylistinfo = 'GetEachPlaylistinfo Playlist="'
ResetPlaylist = 'ResetPlaylist'

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

while True:
try:
print(")
print('Input any Number')
print(")
print('1:GetSystemTime') —print{T:GetSystemTime?)
print('2:SelectPlayList')
print('3:Loop")
print('4:Play’)
print('5:Pause’)
print('6:Stop")
print('7:Seek’)
print('8:Skip")
print('9:DisconnectReq - timeline restart -')
print('0:Exit")
print(")
print(‘a:GetPlaylistinfo')
print('b:GetPlayinglInfo")
print('c:GetEachPlaylistinfo')
print('d:ResetPlaylist’)
print(") print('e:SetSyncTime")
message = input()
if message == "'end"
print(‘closing socket")
sock.close()

print('done’)

break
else:
if message =="1" if-message=="1"
start u = int(time.time() * 1000000) ——startu=1int{time:time()-*1060000)

print("send : " + GetSystemTime + str(start _u))
send data = GetSystemTime + str(start_u)

send len = sock.sendto(send data.encode('utf-8'), fmp_address)

elif message == '2"
print("send : " + SelectPlayList + PLAYLIST)
send_data = SelectPlayList + PLAYLIST
send len = sock.sendto(send data.encode('utf-8'), fmp_address)

elif message == '3"
print(")
print('Input any Number")
print(")

print('1:Loop disable')
print('2:Loop enable')
print(")

selectnum = input()

1

if selecthum =="1"

ENABLELOOP ="0'
elif selectnum == '2"

ENABLELOOP ="1"
else :

continue

print("send : " + Loop + ENABLELOOP)
send_data = Loop + ENABLELOOP

send_len = sock.sendto(send_data.encode('utf-8'), fmp_address)

elif message == "4":
print(")
print('Input any Number')
print(")

print('1:Play from start position')
print('2:Play from stop position")
print(")

selecthum = input()

if selectnum =="1"
PLAY_POSITION =0
elif selectnum == "2"
PLAY_POSITION = PLAY_POSITION
else :

continue

start_u = int((time.time() * 1000000) + marge_time - diff_time) ——startu=-nt{{timetime)—*1066000)+marge—time—difftime)

print("send : " + Playl + str(start_u) + Play3 + str(PLAY_POSITION)) print("send : " + Playl + Play3 + str(PLAY_POSITION))
send_data = Playl + str(start_u) + Play3 + str(PLAY_POSITION) send_data = Playl + Play3 + str(PLAY_POSITION)

send_len = sock.sendto(send_data.encode('utf-8'), fmp_address)

play_start_time = start_u + diff_time —ptay—starttime=-startu—=+difftime

PauseCommand needs to specify the Pause position
(in the sample below, the elapsed time from the Play start time is forcibly set to the Pause position)
elif message == '5"
pause_position = int(((time.time() * 1000000) - play_start time) + PLAY_POSITION) pause_position = 10000000

print("send : " + Pause?2 + str(pause_position))
send_data = Pause? + str(pause_position)
send_len = sock.sendto(send_data.encode('utf-8'), fmp_address)
PLAY_POSITION = pause_position

elif message == '6"
print("send : " + Stop)
send_data = Stop

send_len = sock.sendto(send_data.encode('utf-8'), fmp_address)

elif message == "7"
print(")
print('Input Seek position(0~[us])")
print(")

selectnum = input()

seek_position = int(selectnum)

start_u = int(time.time() * 1000000 + marge_time - diff_time) —————starto=int{timetime (- 16060600+marge—time—diff—time)
print("send : " + Seekl + str(start_u) + Seek? + str(seek_position)) print("send : " + Seekl + Seek? + str(seek_position))
send data = Seekl + str(start_u) + Seek? + str(seek_position) send data = Seekl + Seek?2 + str(seek_position)

send_len = sock.sendto(send data.encode('utf-8'), fmp_address)

elif message == '8"
start_u = int(time.time() * 1000000 + marge_time - diff_time) ————starto=int{time-time () 1600600+marge—time—difftime)
print("send : " + Skip + str(start_u)) print("send : " + Skip)
send data = Skip + str(start_u) send data = Skip

send len = sock.sendto(send data.encode('utf-8'), fmp_address)
PLAY _POSITION =0

elif message == "'9"
print("send : " + DisconnectReq)
send_data = DisconnectReq
send len = sock.sendto(send data.encode('utf-8'), fmp_address)

elif message == "'0"
print(‘closing socket')
sock.close()
print('done’)
break

elif message == "a"
print("send : " + GetPlaylistInfo)
send_data = GetPlaylistInfo
send_len = sock.sendto(send_data.encode('utf-8'), fmp_address)

elif message =="b":
print("send : " + GetPlayinglnfo)
send_data = GetPlayinginfo

send_len = sock.sendto(send_data.encode('utf-8'), fmp_address)

elif message == 'c"
print(")
print('Input Playlist name')
print(")

selectpl = input()

print("send : " + GetEachPlaylistinfo + str(selectpl))
send_data = GetEachPlaylistinfo + str(selectpl)

send_len = sock.sendto(send_data.encode('utf-8'), fmp_address)

Even if you don't use ResetPlaylist, you can substitute DisconnectReq
elif message == 'd":
print("send : " + ResetPlaylist)
send_data = ResetPlaylist

send_len = sock.sendto(send_data.encode('utf-8'), fmp_address)

else:

continue

rx_meesage, addr = sock.recvfrom(M_SIZE)

print(f"recive: {rx_meesage.decode(encoding='utf-8')}")

if message =="1"
fmp_kekka = rx_meesage.decode(encoding="utf-8'")[0:2]
if fmp_kekka == "OK"

fmp_time = rx_meesage.decode(encoding="utf-8")[-17:-1]

diff_time = int(start_u) - int(fmp_time)
print("diff_time : " + str(diff_time) + " us")
else :

continue

elif message == "'6"
fmp_kekka = rx_meesage.decode(encoding="'utf-8")[0:2]
if fmp_kekka == "OK"

fmp_time = rx_meesage.decode(encoding="utf-8')[19:-1]

PLAY_POSITION = int(fmp_time)
print("PLAY_POSITION : " + str(PLAY_POSITION) + " us")
else :

continue

except Keyboardinterrupt:
print('closing socket")
sock.close()
print('done’)
break

elif message == 'e":
print(")
print('Input Sync Time(0~[s])")
print(")

synctime = input()

print("send : SetSyncTime Time=" + str(synctime))
send_data = "SetSyncTime Time=" + str(synctime)

send_len = sock.sendto(send_data.encode('utf-8'), bload_addres)

	ALL
	FMP50 series UDP Commands User Manual.pdf
	ALL
	空白ページ
	com_REQ12 series.pdf
	コピー
	temp

	ControlCommands_Master_057.pdf
	temp

